MUSCLE SUPPLEMENTS CONFERENCE


Muscle Supplements Conference is one of the leading research topics in the international research conference domain. Muscle Supplements is a conference track under the Nutrition and Food Engineering Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Nutrition and Food Engineering.

internationalscience.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Nutrition and Food Engineering).

Muscle Supplements is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Muscle Supplements Conference Track will be held at “Nutrition and Food Engineering Conference in New York, United States in November 2020” .

Muscle Supplements is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

NOVEMBER 05 - 06, 2020
NEW YORK, UNITED STATES

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline October 05, 2020
  • CONFERENCE CODE: 20NFE11US
  • One Time Submission Deadline Reminder
FINISHED

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

NOVEMBER 21 - 22, 2019
PARIS, FRANCE

  • CONFERENCE CODE: 19NFE11FR
FINISHED

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

JANUARY 21 - 22, 2020
LONDON, UNITED KINGDOM

  • CONFERENCE CODE: 20NFE01GB
FINISHED

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

MARCH 26 - 27, 2020
TOKYO, JAPAN

  • CONFERENCE CODE: 20NFE03JP
FINISHED

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

MAY 13 - 14, 2020
AMSTERDAM, NETHERLANDS

  • CONFERENCE CODE: 20NFE05NL
FINISHED

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

JUNE 25 - 26, 2020
ISTANBUL, TURKEY

  • CONFERENCE CODE: 20NFE06TR
FINISHED

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

JULY 14 - 15, 2020
STOCKHOLM, SWEDEN

  • CONFERENCE CODE: 20NFE07SE
FINISHED

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

SEPTEMBER 16 - 17, 2020
ZÜRICH, SWITZERLAND

  • CONFERENCE CODE: 20NFE09CH

Nutrition and Food Engineering Conference Call For Papers are listed below:

Previously Published Papers on "Muscle Supplements Conference"

  • Factors Determining Selection of Essential Nutrition Supplements
    Authors: Daniel C. S. Lim, Keywords: Nutritional supplements, vitamins and minerals, bioavailability, supplementation determinants, nutrition guidelines. DOI:10.5281/zenodo.1128783 Abstract: There are numerous nutritional supplements, such as multivitamins and nutrition drinks, in the market today. Many of these supplements are expensive and tend to be driven commercially by business decisions and big marketing budgets. Many of the costs are ultimately borne by the end user in the quest for keeping to a healthy lifestyle. This paper proposes a system with a list of ten determinants to gauge how to decide the value of various supplements. It suggests variables such as composition, safety, efficacy and bioavailability, as well as several other considerations. These guidelines can help to tackle many of the issues that people of all ages face in the way that they receive essential nutrients. The system also aims to promote and improve the safety and choice of foods and supplements. In so doing, the system aims to promote the individual’s or population’s control over their own health and reduce the growing health care burden on the society.
  • Nutritional Composition of Selected Wild Fruits from Minna Area of Niger State, Nigeria
    Authors: John O. Jacob, Abdullahi Mann, Olanrewaju I. Adeshina, Mohammed M. Ndamitso, Keywords: Minerals, nutrition, supplements, wild fruits. DOI:10.5281/zenodo.1123618 Abstract: Strychnos spinosa, Detarium microcarpum, Diospyros mespiliformis, Dialium guineese and Gardenia ternifolia are some of the wild fruits consume in the villages around Minna, Niger State. This investigation was conducted to assess the nutritional potentials of these fruits both for human consumption and for possible application in animal feed formulations. Standard analytical methods were employed in the determination of the various nutritional parameters. The proximate analysis results showed that the moisture contents ranged between (6.17-10.70%); crude fat (2.04-8.85%); crude protein (5.16-6.80%); crude fibre (7.23-19.65%); Ash (3.46-5.56%); carbohydrate (57.77-69.79%); energy value (284.49-407 kcal/mg); Vitamin C (7.2-39.93 mg/100g). The mineral analysis shows that the selected wild fruits could contribute considerable amount of both micro and macro elements to human nutrition potassium, sodium and calcium range between; potassium (343.27-764.71%); sodium (155.04-348.44%); calcium (52.47-101%). The macro element for the fruits pulp were in the order K>Na>Mg>Ca, hence, they could be included in diet to supplement daily nutrient requirement and in animal feed formulations. The domestication of these fruits is also encouraged.
  • Measurements of MRI R2* Relaxation Rate in Liver and Muscle: Animal Model
    Authors: Chiung-Yun Chang, Po-Chou Chen, Jiun-Shiang Tzeng, Ka-Wai Mac, Chia-Chi Hsiao, Jo-Chi Jao, Keywords: Liver, MRI, multi-planar fast gradient echo, muscle, R2* relaxation rate. DOI:10.5281/zenodo.1110147 Abstract: This study was aimed to measure effective transverse relaxation rates (R2*) in the liver and muscle of normal New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the constituents of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterwards, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) to acquire images for R2* measurements. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(sı) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8 ± 10.9 s-1 and 37.4 ± 9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, the more the iron contents in tissue, the higher the R2*. The correlations between R2* and iron content in NZW rabbits might be valuable for further exploration.
  • Effect of L-Arginine on Neuromuscular Transmission of the Chick Biventer Cervicis Muscle
    Authors: S. Asadzadeh Vostakolaei, Keywords: Chick, L-Arginine, Nitric Oxide, Skeletal muscle. DOI:10.5281/zenodo.1075659 Abstract: In this study, the effect of L-arginine was examined at the neuromuscular junction of the chick biventer cervicis muscle. LArginine at 500 μg/ ml, decreased twitch response to electerical stimulation, and produced rightward shift of the dose- response curve for acetylcholine or carbachol. L-Arginine at 1000μg/ ml produced a strong shift to the right of the dose – response curve for acetylcholine or carbachol with a reduction in the efficacy. The inhibitory effect of L-arginine on the twitch response was blocked by caffeine (200μg/ ml). NO levels were also measured in the chick biventer cervicis muscle homogenates, using spectrophotometric method for the direct detection of NO, nitrite and nitrate. Total nitrite (nitrite + nitrate) was measured by a spectrophotometer at 540 nm after the conversion of nitrate to nitrite by copperized cadmium granules. NO levels were found to be significantly increased in concentrations 500 and 1000μg/ ml of L-arginine in comparison with the control group (p
  • Heat Treatment and Rest-Inserted Exercise Enhances EMG Activity of the Lower Limb
    Authors: Jae Kyun Bang, Sung Jae Hwang, Chang Yong Ko, Chi Hyun Kim, Keywords: Electromyography, Heat Treatment, Muscle, Rest-Inserted Exercise. DOI:10.5281/zenodo.1332392 Abstract: Prolonged immobilization leads to significant weakness and atrophy of the skeletal muscle and can also impair the recovery of muscle strength following injury. Therefore, it is important to minimize the period under immobilization and accelerate the return to normal activity. This study examined the effects of heat treatment and rest-inserted exercise on the muscle activity of the lower limb during knee flexion/extension. Twelve healthy subjects were assigned to 4 groups that included: (1) heat treatment + rest-inserted exercise; (2) heat + continuous exercise; (3) no heat + rest-inserted exercise; and (4) no heat + continuous exercise. Heat treatment was applied for 15 mins prior to exercise. Continuous exercise groups performed knee flexion/extension at 0.5 Hz for 300 cycles without rest whereas rest-inserted exercise groups performed the same exercise but with 2 mins rest inserted every 60 cycles of continuous exercise. Changes in the rectus femoris and hamstring muscle activities were assessed at 0, 1, and 2 weeks of treatment by measuring the electromyography signals of isokinetic maximum voluntary contraction. Significant increases in both the rectus femoris and hamstring muscles were observed after 2 weeks of treatment only when both heat treatment and rest-inserted exercise were performed. These results suggest that combination of various treatment techniques, such as heat treatment and rest-inserted exercise, may expedite the recovery of muscle strength following immobilization.

Conferences by Location