FLAVOR TECHNOLOGY CONFERENCE


Flavor Technology Conference is one of the leading research topics in the international research conference domain. Flavor Technology is a conference track under the Nutrition and Food Engineering Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Nutrition and Food Engineering.

internationalscience.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Nutrition and Food Engineering).

Flavor Technology is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Flavor Technology Conference Track will be held at “Nutrition and Food Engineering Conference in Istanbul, Turkey in June 2020” - “Nutrition and Food Engineering Conference in Stockholm, Sweden in July 2020” - “Nutrition and Food Engineering Conference in Zürich, Switzerland in September 2020” - “Nutrition and Food Engineering Conference in New York, United States in November 2020” .

Flavor Technology is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

JUNE 25 - 26, 2020
ISTANBUL, TURKEY

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline May 26, 2020
  • CONFERENCE CODE: 20NFE06TR
  • One Time Submission Deadline Reminder

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

JULY 14 - 15, 2020
STOCKHOLM, SWEDEN

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline June 11, 2020
  • CONFERENCE CODE: 20NFE07SE
  • One Time Submission Deadline Reminder

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

SEPTEMBER 16 - 17, 2020
ZÜRICH, SWITZERLAND

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline August 13, 2020
  • CONFERENCE CODE: 20NFE09CH
  • One Time Submission Deadline Reminder

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

NOVEMBER 05 - 06, 2020
NEW YORK, UNITED STATES

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline October 05, 2020
  • CONFERENCE CODE: 20NFE11US
  • One Time Submission Deadline Reminder
FINISHED

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

NOVEMBER 21 - 22, 2019
PARIS, FRANCE

  • CONFERENCE CODE: 19NFE11FR
FINISHED

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

JANUARY 21 - 22, 2020
LONDON, UNITED KINGDOM

  • CONFERENCE CODE: 20NFE01GB
FINISHED

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

MARCH 26 - 27, 2020
TOKYO, JAPAN

  • CONFERENCE CODE: 20NFE03JP
FINISHED

. INTERNATIONAL NUTRITION AND FOOD ENGINEERING CONFERENCE

MAY 13 - 14, 2020
AMSTERDAM, NETHERLANDS

  • CONFERENCE CODE: 20NFE05NL

Nutrition and Food Engineering Conference Call For Papers are listed below:

Previously Published Papers on "Flavor Technology Conference"

  • Problems and Prospects of Agricultural Biotechnology in Nigeria’s Developing Economy
    Authors: Samson Abayomi Olasoju, Olufemi Adekunle, Titilope Edun, Johnson Owoseni, Keywords: Biosafety, biotechnology, food security, genetic engineering, genetic modification. DOI:10.5281/zenodo.2021611 Abstract: Science offers opportunities for revolutionizing human activities, enriched by input from scientific research and technology. Biotechnology is a major force for development in developing countries such as Nigeria. It is found to contribute to solving human problems like water and food insecurity that impede national development and threaten peace wherever it is applied. This review identified the problems of agricultural biotechnology in Nigeria. On the part of rural farmers, there is a lack of adequate knowledge or awareness of biotechnology despite the fact that they constitute the bulk of Nigerian farmers. On part of the government, the problems include: lack of adequate implementation of government policy on bio-safety and genetically modified products, inadequate funding of education as well as research and development of products related to biotechnology. Other problems include: inadequate infrastructures (including laboratory), poor funding and lack of national strategies needed for development and running of agricultural biotechnology. In spite of all the challenges associated with agricultural biotechnology, its prospects still remain great if Nigeria is to meet with the food needs of the country’s ever increasing population. The introduction of genetically engineered products will lead to the high productivity needed for commercialization and food security. Insect, virus and other related diseases resistant crops and livestock are another viable area of contribution of biotechnology to agricultural production. In conclusion, agricultural biotechnology will not only ensure food security, but, in addition, will ensure that the local farmers utilize appropriate technology needed for large production, leading to the prosperity of the farmers and national economic growth, provided government plays its role of adequate funding and good policy implementation.
  • Economic Analysis, Growth and Yield of Grafting Tomato Varieties for Solanum torvum as a Rootstock
    Authors: Evy Latifah, Eko Widaryanto, M. Dawam Maghfoer, Arifin, Keywords: Grafting technology, economic analysis, growth, yield of tomato, Solanum torvum. DOI:10.5281/zenodo.1474966 Abstract: Tomato (Lycopersicon esculentum Mill.) is potential vegetables to develop, because it has high economic value and has the potential to be exported. There is a decrease in tomato productivity due to unfavorable growth conditions such as bacterial wilt, fusarium wilt, high humidity, high temperature and inappropriate production technology. Grafting technology is one alternative technology. In addition to being able to control the disease in the soil, grafting is also able to increase the growth and yield of production. Besides, it is also necessary to know the economic benefits if using grafting technology. A promising eggplant rootstock for tomato grafting is Solanum torvum. S. torvum is selected as a rootstock with high compatibility. The purpose of this research is to know the effect of grafting several varieties of tomatoes with Solanum torvum as a rootstock. The experiment was conducted in Agricultural Extension Center Pare. Experimental Garden of Pare Kediri sub-district from July to early December 2016. The materials used were tomato Cervo varieties, Karina, Timoty, and Solanum torvum. Economic analysis, growth, and yield including plant height, number of leaves, percentage of disease and tomato production were used as performance measures. The study showed that grafting tomato Timoty scion with Solanum torvum as rootstock had higher production. Financially, grafting tomato Timoty and Cervo scion had higher profit about. 28,6% and 16,3% compared to Timoty and Cervo variety treatment without grafting.
  • Reverse Engineering of Agricultural Machinery: A Key to Food Sufficiency in Nigeria
    Authors: Williams S. Ebhota, Virginia Chika Ebhota, Samuel A. Ilupeju, Keywords: Agricultural machinery, domestic manufacturing, forward engineering, production reverse engineering, technology. DOI:10.5281/zenodo.1130057 Abstract: Agriculture employs about three-quarter of Nigeria's workforce and yet food sufficiency is a challenge in the country. This is largely due to poor and outdated pre-harvest and post-harvest farming practices. The land fallow system is still been practised as fertiliser production in the country is grossly inadequate and expensive. The few available post-harvest processing facilities are faced with ageing and are inefficient. Also, use of modern processing equipment is limited by farmers' lack of fund, adequate capacity to operate and maintain modern farming equipment. This paper, therefore, examines key barriers to agricultural products processing equipment in the country. These barriers include over-dependence on foreign technologies and expertise; poor and inadequate manufacturing infrastructure; and lack of political will by political leaders; lack of funds; and lack of adequate technical skills. This paper, however, sees the increase in the domestic manufacturing of pre-harvest and post-harvest machinery and equipment through reverse engineering approach as a key to food production sufficiency in Nigeria.
  • Effect of Urea Deep Placement Technology Adoption on the Production Frontier: Evidence from Irrigation Rice Farmers in the Northern Region of Ghana
    Authors: Shaibu Baanni Azumah, William Adzawla, Keywords: Efficiency, rice farmers, stochastic frontier, UDP technology. DOI:10.5281/zenodo.1130019 Abstract: Rice is an important staple crop, with current demand higher than the domestic supply in Ghana. This has led to a high and unfavourable import bill. Therefore, recent policies and interventions in the agricultural sub-sector aim at promoting various improved agricultural technologies in order to improve domestic production and reduce the importation of rice. In this study, we examined the effect of the adoption of Urea Deep Placement (UDP) technology by rice farmers on the position of the production frontier. This involved 200 farmers selected through a multi stage sampling technique in the Northern region of Ghana. A Cobb-Douglas stochastic frontier model was fitted. The result showed that the adoption of UDP technology shifts the output frontier outward and also move the farmers closer to the frontier. Farmers were also operating under diminishing returns to scale which calls for redress. Other factors that significantly influenced rice production were farm size, labour, use of certified seeds and NPK fertilizer. Although there was an opportunity for improvement, the farmers were highly efficient (92%), compared to previous studies. Farmers’ efficiency was improved through increased education, household size, experience, access to credit, and lack of extension service provision by MoFA. The study recommends the revision of Ghana’s agricultural policy to include the UDP technology. Agricultural Extension officers of the Ministry of Food and Agriculture (MoFA) should be trained on the UDP technology to support IFDC’s drive to improve adoption by rice farmers. Rice farmers are also encouraged to expand their farm lands, improve plant population, and also increase the usage of fertilizer to improve yields. Mechanisms through which credit can be made easily accessible and effectively utilised should be identified and promoted.
  • 21st Century Biotechnological Research and Development Advancements for Industrial Development in India
    Authors: Monisha Isaac, Keywords: Biotechnology, advancement, agriculture, bio-services, bio-industries, bio-pharmaceuticals. DOI:10.5281/zenodo.1128963 Abstract: Biotechnology is a discipline which explains the use of living organisms and systems to construct a product, or we can define it as an application or technology developed to use biological systems and organisms processes for a specific use. Particularly, it includes cells and its components use for new technologies and inventions. The tools developed can be further used in diverse fields such as agriculture, industry, research and hospitals etc. The 21st century has seen a drastic development and advancement in biotechnology in India. Significant increase in Government of India’s outlays for biotechnology over the past decade has been observed. A sectoral break up of biotechnology-based companies in India shows that most of the companies are agriculture-based companies having interests ranging from tissue culture to biopesticides. Major attention has been given by the companies in health related activities and in environmental biotechnology. The biopharmaceutical, which comprises of vaccines, diagnostic, and recombinant products is the most reliable and largest segment of the Indian Biotech industry. India has developed its vaccine markets and supplies them to various countries. Then there are the bio-services, which mainly comprise of contract researches and manufacturing services. India has made noticeable developments in the field of bio industries including manufacturing of enzymes, biofuels and biopolymers. Biotechnology is also playing a crucial and significant role in the field of agriculture. Traditional methods have been replaced by new technologies that mainly focus on GM crops, marker assisted technologies and the use of biotechnological tools to improve the quality of fertilizers and soil. It may only be a small contributor but has shown to have huge potential for growth. Bioinformatics is a computational method which helps to store, manage, arrange and design tools to interpret the extensive data gathered through experimental trials, making it important in the design of drugs.
  • A Survey on Ambient Intelligence in Agricultural Technology
    Authors: C. Angel, S. Asha, Keywords: Ambient Intelligence, Agricultural technology, smart agriculture, precise farming. DOI:10.5281/zenodo.1107778 Abstract: Despite the advances made in various new technologies, application of these technologies for agriculture still remains a formidable task, as it involves integration of diverse domains for monitoring the different process involved in agricultural management. Advances in ambient intelligence technology represents one of the most powerful technology for increasing the yield of agricultural crops and to mitigate the impact of water scarcity, climatic change and methods for managing pests, weeds and diseases. This paper proposes a GPS-assisted, machine to machine solutions that combine information collected by multiple sensors for the automated management of paddy crops. To maintain the economic viability of paddy cultivation, the various techniques used in agriculture are discussed and a novel system which uses ambient intelligence technique is proposed in this paper. The ambient intelligence based agricultural system gives a great scope.
  • Production of Apricot Vinegar Using an Isolated Acetobacter Strain from Iranian Apricot
    Authors: Keivan Beheshti Maal, Rasoul Shafiei, Noushin Kabiri, Keywords: Acetic Acid Bacteria, Acetobacter, Fermentation, Food and Agricultural Biotechnology, Iranian Apricot, Vinegar. DOI:10.5281/zenodo.1080223 Abstract: Vinegar or sour wine is a product of alcoholic and subsequent acetous fermentation of sugary precursors derived from several fruits or starchy substrates. This delicious food additive and supplement contains not less than 4 grams of acetic acid in 100 cubic centimeters at 20°C. Among the large number of bacteria that are able to produce acetic acid, only few genera are used in vinegar industry most significant of which are Acetobacter and Gluconobacter. In this research we isolated and identified an Acetobacter strain from Iranian apricot, a very delicious and sensitive summer fruit to decay, we gathered from fruit's stores in Isfahan, Iran. The main culture media we used were Carr, GYC, Frateur and an industrial medium for vinegar production. We isolated this strain using a novel miniature fermentor we made at Pars Yeema Biotechnologists Co., Isfahan Science and Technology Town (ISTT), Isfahan, Iran. The microscopic examinations of isolated strain from Iranian apricot showed gram negative rods to cocobacilli. Their catalase reaction was positive and oxidase reaction was negative and could ferment ethanol to acetic acid. Also it showed an acceptable growth in 5%, 7% and 9% ethanol concentrations at 30°C using modified Carr media after 24, 48 and 96 hours incubation respectively. According to its tolerance against high concentrations of ethanol after four days incubation and its high acetic acid production, 8.53%, after 144 hours, this strain could be considered as a suitable industrial strain for a production of a new type of vinegar, apricot vinegar, with a new and delicious taste. In conclusion this is the first report of isolation and identification of an Acetobacter strain from Iranian apricot with a very good tolerance against high ethanol concentrations as well as high acetic acid productivity in an acceptable incubation period of time industrially. This strain could be used in vinegar industry to convert apricot spoilage to a beneficiary product and mentioned characteristics have made it as an amenable strain in food and agricultural biotechnology.
  • Characterization of an Acetobacter Strain Isolated from Iranian Peach that Tolerates High Temperatures and Ethanol Concentrations
    Authors: K. Beheshti Maal, R. Shafiee, Keywords: Acetobacter, Acetic Acid Bacteria, Vinegar, Peach,Food Biotechnology, Industrial Microbiology, Fermentation DOI:10.5281/zenodo.1078034 Abstract: Vinegar is a precious food additive and complement as well as effective preservative against food spoilage. Recently traditional vinegar production has been improved using various natural substrates and fruits such as grape, palm, cherry, coconut, date, sugarcane, rice and balsam. These neoclassical fermentations resulted in several vinegar types with different tastes, fragrances and nutritional values because of applying various acetic acid bacteria as starters. Acetic acid bacteria include genera Acetobacter, Gluconacetobacter and Gluconobacter according to latest edition of Bergy-s Manual of Systematic Bacteriology that classifies genera on the basis of their 16s RNA differences. Acetobacter spp as the main vinegar starters belong to family Acetobacteraceae that are gram negative obligate aerobes, chemoorganotrophic bacilli that are oxidase negative and oxidize ethanol to acetic acid. In this research we isolated and identified a native Acetobacter strain with high acetic acid productivity and tolerance against high ethanol concentrations from Iranian peach as a summer delicious fruit that is very susceptible to food spoilage and decay. We used selective and specific laboratorial culture media such as Standard GYC, Frateur and Carr medium. Also we used a new industrial culture medium and a miniature fermentor with a new aeration system innovated by Pars Yeema Biotechnologists Co., Isfahan Science and Technology Town (ISTT), Isfahan, Iran. The isolated strain was successfully cultivated in modified Carr media with 2.5% and 5% ethanol simultaneously in high temperatures, 34 - 40º C after 96 hours of incubation period. We showed that the increase of ethanol concentration resulted in rising of strain sensitivity to high temperature. In conclusion we isolated and characterized a new Acetobacter strain from Iranian peach that could be considered as a potential strain for production of a new vinegar type, peach vinegar, with a delicious taste and advantageous nutritional value in food biotechnology and industrial microbiology.
  • A Green Chemical Technique for the Synthesis of Magnetic Nanoparticles by Magnetotactic Bacteria
    Authors: Parisa Tajer-Mohammad-Ghazvini, Rouha Kasra-Kermanshahi, Ahmad Nozad-Golikand, Majid Sadeghizadeh, Keywords: Green chemistry, Magnetosome, Magnetotactic bacteria, Magnetic nanoparticles, Nano-Biotechnology. DOI:10.5281/zenodo.1072016 Abstract: Bacterial magnetic nanoparticles have great useful potential in biotechnological and biomedical applications. In this study, a liquid growth medium was modified for cultivation a fastidious magnetotactic bacterium that has been isolated from Anzali lagoon, Iran in our previous research. These modifications include change in vitamin, mineral, carbon sources and etcetera. In our experience, the serum bottles and designed air-tight laboratory bottles were used to create microaerobic conditions in order to development of a method for scale-up experiment. This information may serve as a guide to green chemistry based biological protocols for the synthesis of magnetic nanoparticles with control over the chemical composition, morphology and size.
  • A Preliminary Technology Assessment Analysis for the use of High Pressure Treatment on Halloumi Cheese
    Authors: Michalis Menicou, Stavros Christofi, Niki Chartosia, Vassos Vassiliou, Marios Charalambides, Keywords: Economic feasibility analysis, high pressure treatment, Halloumi cheese, technology assessment DOI:10.5281/zenodo.1060369 Abstract: This paper presents preliminary results of a technology assessment analysis for the use of high pressure treatment (HPT) on Halloumi cheese. In particular, it presents the importance of this traditional Cyprus cheese to the island-s economy, explains its production process, and gives a brief introduction to HPT and its application on cheese. More importantly, it offers preliminary results of HPT of Halloumi samples and a preliminary economic feasibility study on the financial implications of the introduction of such technology.