ENERGY PRODUCTIVITY AND EFFICIENCY IN AGRICULTURE CONFERENCE


Energy Productivity and Efficiency in Agriculture Conference is one of the leading research topics in the international research conference domain. Energy Productivity and Efficiency in Agriculture is a conference track under the Agricultural and Biosystems Engineering Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Agricultural and Biosystems Engineering.

internationalscience.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Agricultural and Biosystems Engineering).

Energy Productivity and Efficiency in Agriculture is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Energy Productivity and Efficiency in Agriculture Conference Track will be held at “Agricultural and Biosystems Engineering Conference in Paris, France in November 2019” - “Agricultural and Biosystems Engineering Conference in London, United Kingdom in January 2020” - “Agricultural and Biosystems Engineering Conference in Tokyo, Japan in March 2020” - “Agricultural and Biosystems Engineering Conference in Amsterdam, Netherlands in May 2020” - “Agricultural and Biosystems Engineering Conference in Istanbul, Turkey in June 2020” - “Agricultural and Biosystems Engineering Conference in Stockholm, Sweden in July 2020” - “Agricultural and Biosystems Engineering Conference in Zürich, Switzerland in September 2020” - “Agricultural and Biosystems Engineering Conference in New York, United States in November 2020” .

Energy Productivity and Efficiency in Agriculture is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

INTERNATIONAL AGRICULTURAL AND BIOSYSTEMS ENGINEERING CONFERENCE

NOVEMBER 21 - 22, 2019
PARIS, FRANCE

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline October 21, 2019
  • CONFERENCE CODE: 19ABE11FR
  • One Time Submission Deadline Reminder

INTERNATIONAL AGRICULTURAL AND BIOSYSTEMS ENGINEERING CONFERENCE

JANUARY 21 - 22, 2020
LONDON, UNITED KINGDOM

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline November 19, 2019
  • CONFERENCE CODE: 20ABE01GB
  • One Time Submission Deadline Reminder

INTERNATIONAL AGRICULTURAL AND BIOSYSTEMS ENGINEERING CONFERENCE

MARCH 26 - 27, 2020
TOKYO, JAPAN

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline February 27, 2020
  • CONFERENCE CODE: 20ABE03JP
  • One Time Submission Deadline Reminder

INTERNATIONAL AGRICULTURAL AND BIOSYSTEMS ENGINEERING CONFERENCE

MAY 13 - 14, 2020
AMSTERDAM, NETHERLANDS

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline April 14, 2020
  • CONFERENCE CODE: 20ABE05NL
  • One Time Submission Deadline Reminder

INTERNATIONAL AGRICULTURAL AND BIOSYSTEMS ENGINEERING CONFERENCE

JUNE 25 - 26, 2020
ISTANBUL, TURKEY

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline May 26, 2020
  • CONFERENCE CODE: 20ABE06TR
  • One Time Submission Deadline Reminder

INTERNATIONAL AGRICULTURAL AND BIOSYSTEMS ENGINEERING CONFERENCE

JULY 14 - 15, 2020
STOCKHOLM, SWEDEN

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline June 11, 2020
  • CONFERENCE CODE: 20ABE07SE
  • One Time Submission Deadline Reminder

INTERNATIONAL AGRICULTURAL AND BIOSYSTEMS ENGINEERING CONFERENCE

SEPTEMBER 15 - 16, 2020
ZÜRICH, SWITZERLAND

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline August 13, 2020
  • CONFERENCE CODE: 20ABE09CH
  • One Time Submission Deadline Reminder

INTERNATIONAL AGRICULTURAL AND BIOSYSTEMS ENGINEERING CONFERENCE

NOVEMBER 05 - 06, 2020
NEW YORK, UNITED STATES

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline October 05, 2020
  • CONFERENCE CODE: 20ABE11US
  • One Time Submission Deadline Reminder

Agricultural and Biosystems Engineering Conference Call For Papers are listed below:

Previously Published Papers on "Energy Productivity and Efficiency in Agriculture Conference"

  • The Features of Formation of Russian Agriculture’s Sectoral Structure
    Authors: Natalya G. Filimonova, Mariya G. Ozerova, Irina N. Ermakova, Keywords: Russian agriculture system, sectoral structure, organizational and economic structure, structural changes. DOI:10.5281/zenodo.2571694 Abstract: The long-term strategy of the economic development of Russia up to 2030 is based on the concept of sustainable growth. The determining factor of such development is complex changes in the economic system which may be achieved by making progressive changes in its structure. The structural changes determine the character and the direction of economic development, as well as they include all elements of this system without exception, and their regulated character ensures the most rapid aim achievement. This article has discussed the industrial structure of the agriculture in Russia. With the use of the system of indexes, the article has determined the directions, intensity, and speed of structural shifts. The influence of structural changes on agricultural production development has been found out. It is noticed that the changes in the industrial structure are synchronized with the changes in the organisation and economic structure. Efficiency assessment of structural changes allowed to trace the efficiency of structural changes and elaborate the main directions for agricultural policy improvement.
  • Sunflower Irrigation with Two Different Types of Soil Moisture Sensors
    Authors: C. D. Papanikolaou, V. A. Giouvanis, E. A. Karatasiou, D. S. Dimakas, M. A. Sakellariou-Makrantonaki, Keywords: Irrigation scheduling, soil moisture sensors, sustainable agriculture, water saving. DOI:10.5281/zenodo.1474383 Abstract: Irrigation is one of the most important cultivation practices for each crop, especially in areas where rainfall is enough to cover the crop water needs. In such areas, the farmers must irrigate in order to achieve high economical results. The precise irrigation scheduling contributes to irrigation water saving and thus a valuable natural resource is protected. Under this point of view, in the experimental field of the Laboratory of Agricultural Hydraulics of the University of Thessaly, a research was conducted during the growing season of 2012 in order to evaluate the growth, seed and oil production of sunflower as well as the water saving, by applying different methods of irrigation scheduling. Three treatments in four replications were organized. These were: a) surface drip irrigation where the irrigation scheduling based on the Penman-Monteith (PM) method (control); b) surface drip irrigation where the irrigation scheduling based on a soil moisture sensor (SMS); and c) surface drip irrigation, where the irrigation scheduling based on a soil potential sensor (WM).
  • Accounting for Rice Productivity Heterogeneity in Ghana: The Two-Step Stochastic Metafrontier Approach
    Authors: Franklin Nantui Mabe, Samuel A. Donkoh, Seidu Al-Hassan, Keywords: Efficiency, farmer innovation systems, improved agricultural technologies, two-step stochastic metafrontier approach. DOI:10.5281/zenodo.1340613 Abstract: Rice yields among agro-ecological zones are heterogeneous. Farmers, researchers and policy makers are making frantic efforts to bridge rice yield gaps between agro-ecological zones through the promotion of improved agricultural technologies (IATs). Farmers are also modifying these IATs and blending them with indigenous farming practices (IFPs) to form farmer innovation systems (FISs). Also, different metafrontier models have been used in estimating productivity performances and their drivers. This study used the two-step stochastic metafrontier model to estimate the productivity performances of rice farmers and their determining factors in GSZ, FSTZ and CSZ. The study used both primary and secondary data. Farmers in CSZ are the most technically efficient. Technical inefficiencies of farmers are negatively influenced by age, sex, household size, education years, extension visits, contract farming, access to improved seeds, access to irrigation, high rainfall amount, less lodging of rice, and well-coordinated and synergized adoption of technologies. Albeit farmers in CSZ are doing well in terms of rice yield, they still have the highest potential of increasing rice yield since they had the lowest TGR. It is recommended that government through the ministry of food and agriculture, development partners and individual private companies promote the adoption of IATs as well as educate farmers on how to coordinate and synergize the adoption of the whole package. Contract farming concept and agricultural extension intensification should be vigorously pursued to the latter.
  • From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability
    Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli, Keywords: Agriculture 4.0, agri-food supply chain, Industry 4.0, voluntary traceability. DOI:10.5281/zenodo.1316618 Abstract: Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.
  • Sustainable Intensification of Agriculture in Victoria’s Food Bowl: Optimizing Productivity with the use of Decision-Support Tools
    Authors: M. Johnson, R. Faggian, V. Sposito, Keywords: Agriculture, decision-support management tools, GIS, sustainable intensification. DOI:10.5281/zenodo.1316544 Abstract: A participatory and engaged approach is key in connecting agricultural managers to sustainable agricultural systems to support and optimize production in Victoria’s food bowl. A sustainable intensification (SI) approach is well documented globally, but participation rates amongst Victorian farmers is fragmentary, and key outcomes and implementation strategies are poorly understood. Improvement in decision-support management tools and a greater understanding of the productivity gains available upon implementation of SI is necessary. This paper reviews the current understanding and uptake of SI practices amongst farmers in one of Victoria’s premier food producing regions, the Goulburn Broken; and it spatially analyses the potential for this region to adapt to climate change and optimize food production. A Geographical Information Systems (GIS) approach is taken to develop an interactive decision-support tool that can be accessible to on-ground agricultural managers. The tool encompasses multiple criteria analysis (MCA) that identifies factors during the construction phase of the tool, using expert witnesses and regional knowledge, framed within an Analytical Hierarchy Process. Given the complexities of the interrelations between each of the key outcomes, this participatory approach, in which local realities and factors inform the key outcomes and help to strategies for a particular region, results in a robust strategy for sustainably intensifying production in key food producing regions. The creation of an interactive, locally embedded, decision-support management and education tool can help to close the gap between farmer knowledge and production, increase on-farm adoption of sustainable farming strategies and techniques, and optimize farm productivity.
  • Effect of Entomopathogenic Fungi on the Food Consumption of Acrididae Species
    Authors: S. Kumar, R. Sultana, Keywords: Acridid, agriculture, Aspergillus, formulation, Grasshoppers. DOI:10.5281/zenodo.1130645 Abstract: This study was conducted to evaluate the effect of Aspergillus species on acridid populations which are major agricultural pests of rice, sugarcane, wheat, maize and fodder crops in Pakistan. Three and replicates i.e. Aspergillus flavus, A. fumigatus and A. niger, excluding the control, were held under laboratory conditions. It was observed that consumption faecal production of acridids was significantly reduced after the pathogenic application of Aspergillus. In the control replicate, the mortality ratio for stage (N4-N6) was maximum on day 2nd i.e. [F10.7 = 18.33, P < 0.05] followed by [F4.20 = 07.85, P < 0.05] and [F3.77 = 06.11, P < 0.05] on 4th and 3rd day, respectively. Similarly, it was a minimum i.e. [F0.48 = 84.65, P < 0.05] on the 1st day. It was also noted that faecal production of Acridid nymphs was not significantly affected when treated with conidial concentration in H2O formulation; however, it was significantly reduced after the contamination with conidial concentration in oil. The high morality of acridids after contamination of Aspergillus supports their use as bio-control agent for reducing pest population. The present study recommends that exploration and screening must be conducted to provide additional pathogens for evaluation as potential biological control against grasshoppers and locusts.
  • Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses
    Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal, Keywords: Heavy metals, municipal sewage sludge, sustainable agriculture, soil fertility, quality. DOI:10.5281/zenodo.1130611 Abstract: Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.
  • A Review on Climate Change and Sustainable Agriculture in Southeast Nigeria
    Authors: Jane O. Munonye, Keywords: Agriculture, climate change, sustainability, yam. DOI:10.5281/zenodo.1130609 Abstract: Climate change has both negative and positive effects in agricultural production. For agriculture to be sustainable in adverse climate change condition, some natural measures are needed. The issue is to produce more food with available natural resources and reduce the contribution of agriculture to climate change. The study reviewed climate change and sustainable agriculture in southeast Nigeria. Data from the study were from secondary sources. Ten scientific papers were consulted and data for the review were collected from three. The objectives of the paper were as follows: to review the effect of climate change on one major arable crop in southeast Nigeria (yam; Dioscorea rotundata); evident of climate change impact and methods for sustainable agricultural production in adverse weather condition. Some climatic parameter as sunshine, relative humidity and rainfall have negative relationship with yam production and significant at 10% probability. Crop production was predicted to decline by 25% per hectare by 2060 while livestock production has increased the incidence of diseases and pathogens as the major effect to agriculture. Methods for sustainable agriculture and damage of natural resources by climate change were highlighted. Agriculture needs to be transformed as climate changes to enable the sector to be sustainable. There should be a policy in place to facilitate the integration of sustainability in Nigeria agriculture.
  • Effect of Urea Deep Placement Technology Adoption on the Production Frontier: Evidence from Irrigation Rice Farmers in the Northern Region of Ghana
    Authors: Shaibu Baanni Azumah, William Adzawla, Keywords: Efficiency, rice farmers, stochastic frontier, UDP technology. DOI:10.5281/zenodo.1130019 Abstract: Rice is an important staple crop, with current demand higher than the domestic supply in Ghana. This has led to a high and unfavourable import bill. Therefore, recent policies and interventions in the agricultural sub-sector aim at promoting various improved agricultural technologies in order to improve domestic production and reduce the importation of rice. In this study, we examined the effect of the adoption of Urea Deep Placement (UDP) technology by rice farmers on the position of the production frontier. This involved 200 farmers selected through a multi stage sampling technique in the Northern region of Ghana. A Cobb-Douglas stochastic frontier model was fitted. The result showed that the adoption of UDP technology shifts the output frontier outward and also move the farmers closer to the frontier. Farmers were also operating under diminishing returns to scale which calls for redress. Other factors that significantly influenced rice production were farm size, labour, use of certified seeds and NPK fertilizer. Although there was an opportunity for improvement, the farmers were highly efficient (92%), compared to previous studies. Farmers’ efficiency was improved through increased education, household size, experience, access to credit, and lack of extension service provision by MoFA. The study recommends the revision of Ghana’s agricultural policy to include the UDP technology. Agricultural Extension officers of the Ministry of Food and Agriculture (MoFA) should be trained on the UDP technology to support IFDC’s drive to improve adoption by rice farmers. Rice farmers are also encouraged to expand their farm lands, improve plant population, and also increase the usage of fertilizer to improve yields. Mechanisms through which credit can be made easily accessible and effectively utilised should be identified and promoted.
  • Influence of κ-Casein Genotype on Milk Productivity of Latvia Local Dairy Breeds
    Authors: S. Petrovska, D. Jonkus, D. Smiltiņa, Keywords: κ-casein, polymorphism, dairy cows, milk productivity. DOI:10.5281/zenodo.1129569 Abstract: κ-casein is one of milk proteins which are very important for milk processing. Genotypes of κ-casein affect milk yield, fat, and protein content. The main factors which affect local Latvian dairy breed milk yield and composition are analyzed in research. Data were collected from 88 Latvian brown and 82 Latvian blue cows in 2015. AA genotype was 0.557 in Latvian brown and 0.232 in Latvian blue breed. BB genotype was 0.034 in Latvian brown and 0.207 in Latvian blue breed. Highest milk yield was observed in Latvian brown (5131.2 ± 172.01 kg), significantly high fat content and fat yield also was in Latvian brown (p < 0.05). Significant differences between κ-casein genotypes were not found in Latvian brown, but highest milk yield (5057 ± 130.23 kg), protein content (3.42 ± 0.03%), and protein yield (171.9 ± 4.34 kg) were with AB genotype. Significantly high fat content was observed in Latvian blue breed with BB genotype (4.29 ± 0.17%) compared with AA genotypes (3.42 ± 0.19). Similar tendency was found in protein content – 3.27 ± 0.16% with BB genotype and 2.59 ± 0.16% with AA genotype (p < 0.05). Milk yield increases by increasing parity. We did not obtain major tendency of changes of milk fat and protein content according parity.