AUDIO AND ACOUSTIC SIGNAL PROCESSING CONFERENCE


Audio and Acoustic Signal Processing Conference is one of the leading research topics in the international research conference domain. Audio and Acoustic Signal Processing is a conference track under the Biomedical and Biological Engineering Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Biomedical and Biological Engineering.

internationalscience.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Biomedical and Biological Engineering).

Audio and Acoustic Signal Processing is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Audio and Acoustic Signal Processing Conference Track will be held at “Biomedical and Biological Engineering Conference in Paris, France in November 2019” - “Biomedical and Biological Engineering Conference in London, United Kingdom in January 2020” - “Biomedical and Biological Engineering Conference in Tokyo, Japan in March 2020” - “Biomedical and Biological Engineering Conference in Amsterdam, Netherlands in May 2020” - “Biomedical and Biological Engineering Conference in Istanbul, Turkey in June 2020” - “Biomedical and Biological Engineering Conference in Stockholm, Sweden in July 2020” - “Biomedical and Biological Engineering Conference in Zürich, Switzerland in September 2020” - “Biomedical and Biological Engineering Conference in New York, United States in November 2020” .

Audio and Acoustic Signal Processing is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

INTERNATIONAL BIOMEDICAL AND BIOLOGICAL ENGINEERING CONFERENCE

NOVEMBER 21 - 22, 2019
PARIS, FRANCE

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline October 21, 2019
  • CONFERENCE CODE: 18BBE11FR
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOMEDICAL AND BIOLOGICAL ENGINEERING CONFERENCE

JANUARY 21 - 22, 2020
LONDON, UNITED KINGDOM

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline December 19, 2019
  • CONFERENCE CODE: 20BBE01GB
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOMEDICAL AND BIOLOGICAL ENGINEERING CONFERENCE

MARCH 26 - 27, 2020
TOKYO, JAPAN

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline February 27, 2020
  • CONFERENCE CODE: 20BBE03JP
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOMEDICAL AND BIOLOGICAL ENGINEERING CONFERENCE

MAY 13 - 14, 2020
AMSTERDAM, NETHERLANDS

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline April 14, 2020
  • CONFERENCE CODE: 20BBE05NL
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOMEDICAL AND BIOLOGICAL ENGINEERING CONFERENCE

JUNE 25 - 26, 2020
ISTANBUL, TURKEY

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline May 26, 2020
  • CONFERENCE CODE: 20BBE06TR
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOMEDICAL AND BIOLOGICAL ENGINEERING CONFERENCE

JULY 14 - 15, 2020
STOCKHOLM, SWEDEN

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline June 11, 2020
  • CONFERENCE CODE: 20BBE07SE
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOMEDICAL AND BIOLOGICAL ENGINEERING CONFERENCE

SEPTEMBER 15 - 16, 2020
ZÜRICH, SWITZERLAND

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline August 13, 2020
  • CONFERENCE CODE: 20BBE09CH
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOMEDICAL AND BIOLOGICAL ENGINEERING CONFERENCE

NOVEMBER 05 - 06, 2020
NEW YORK, UNITED STATES

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline October 05, 2020
  • CONFERENCE CODE: 20BBE11US
  • One Time Submission Deadline Reminder

Biomedical and Biological Engineering Conference Call For Papers are listed below:

Previously Published Papers on "Audio and Acoustic Signal Processing Conference"

  • Expression of Tissue Plasminogen Activator in Transgenic Tobacco Plants by Signal Peptides Targeting for Delivery to Apoplast, Endoplasmic Reticulum and Cytosol Spaces
    Authors: Sadegh Lotfieblisofla, Arash Khodabakhshi, Keywords: Recombinant tissue plasminogen activator, plant cell comportment, leader signals, transgenic tobacco. DOI:10.5281/zenodo.2363187 Abstract: Tissue plasminogen activator (tPA) as a serine protease plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The production of this drug in plants such as tobacco could reduce its production costs. In this study, expression of tPA gene and protein targeting to different plant cell compartments, using various signal peptides has been investigated. For high level of expression, Kozak sequence was used after CaMV35S in the beginning of the gene. In order to design the final construction, Extensin, KDEL (amino acid sequence including Lys-Asp-Glu-Leu) and SP (γ-zein signal peptide coding sequence) were used as leader signals to conduct this protein into apoplast, endoplasmic reticulum and cytosol spaces, respectively. Cloned human tPA gene under the CaMV (Cauliflower mosaic virus) 35S promoter and NOS (Nopaline Synthase) terminator into pBI121 plasmid was transferred into tobacco explants by Agrobacterium tumefaciens strain LBA4404. The presence and copy number of genes in transgenic tobacco was proved by Southern blotting. Enzymatic activity of the rt-PA protein in transgenic plants compared to non-transgenic plants was confirmed by Zymography assay. The presence and amount of rt-PA recombinant protein in plants was estimated by ELISA analysis on crude protein extract of transgenic tobacco using a specific antibody. The yield of recombinant tPA in transgenic tobacco for SP, KDEL, Extensin signals were counted 0.50, 0.68, 0.69 microgram per milligram of total soluble proteins.
  • Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling
    Authors: Erfan Niazi, Marianne Fenech, Keywords: Red blood cell, Rouleaux, microfluidics, image processing, population balance modeling. DOI:10.5281/zenodo.1129964 Abstract: Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.
  • Electrocardiogram Signal Denoising Using a Hybrid Technique
    Authors: R. Latif, W. Jenkal, A. Toumanari, A. Hatim, Keywords: Hybrid technique, ADTF, DWT, tresholding, ECG signal. DOI:10.5281/zenodo.1129692 Abstract: This paper presents an efficient method of electrocardiogram signal denoising based on a hybrid approach. Two techniques are brought together to create an efficient denoising process. The first is an Adaptive Dual Threshold Filter (ADTF) and the second is the Discrete Wavelet Transform (DWT). The presented approach is based on three steps of denoising, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents some application of the approach on some electrocardiogram signals of the MIT-BIH database. The results of these applications are promising compared to other recently published techniques.
  • Biogas Control: Methane Production Monitoring Using Arduino
    Authors: W. Ait Ahmed, M. Aggour, M. Naciri, Keywords: Biogas, Arduino, processing, code, methane, gas sensor, program. DOI:10.5281/zenodo.1339948 Abstract: Extracting energy from biomass is an important alternative to produce different types of energy (heat, electricity, or both) assuring low pollution and better efficiency. It is a new yet reliable approach to reduce green gas emission by extracting methane from industry effluents and use it to power machinery. We focused in our project on using paper and mill effluents, treated in a UASB reactor. The methane produced is used in the factory’s power supply. The aim of this work is to develop an electronic system using Arduino platform connected to a gas sensor, to measure and display the curve of daily methane production on processing. The sensor will send the gas values in ppm to the Arduino board so that the later sends the RS232 hardware protocol. The code developed with processing will transform the values into a curve and display it on the computer screen.
  • Effect of Biostimulants to Control the Phelipanche ramosa L. Pomel in Processing Tomato Crop
    Authors: G. Disciglio, G. Gatta, F. Lops, A. Libutti, A. Tarantino, E. Tarantino, Keywords: Biostimulants, control methods, Phelipanche ramosa, processing tomato crop. DOI:10.5281/zenodo.1123783 Abstract: The experimental trial was carried out in open field at Foggia district (Apulia Region, Southern Italy), during the spring-summer season 2014, in order to evaluate the effect of four biostimulant products (RadiconÒ, Viormon plusÒ, LysodinÒ and SiaptonÒ 10L), compared with a control (no biostimulant), on the infestation of processing tomato crop (cv Dres) by the chlorophyll-lacking root parasite Phelipanche ramosa. Biostimulants consist in different categories of products (microbial inoculants, humic and fulvic acids, hydrolyzed proteins and aminoacids, seaweed extracts) which play various roles in plant growing, including the improvement of crop resistance and quali-quantitative characteristics of yield. The experimental trial was arranged according to a complete randomized block design with five treatments, each of one replicated three times. The processing tomato seedlings were transplanted on 5 May 2014. Throughout the crop cycle, P. ramosa infestation was assessed according to the number of emerged shoots (branched plants) counted in each plot, at 66, 78 and 92 day after transplanting. The tomato fruits were harvested at full-stage of maturity on 8 August 2014. From each plot, the marketable yield was measured and the quali-quantitative yield parameters (mean weight, dry matter content, colour coordinate, colour index and soluble solids content of the fruits) were determined. The whole dataset was tested according to the basic assumptions for the analysis of variance (ANOVA) and the differences between the means were determined using Tukey’s tests at the 5% probability level. The results of the study showed that none of the applied biostimulants provided a whole control of Phelipanche, although some positive effects were obtained from their application. To this respect, the RadiconÒ appeared to be the most effective in reducing the infestation of this root-parasite in tomato crop. This treatment also gave the higher tomato yield.
  • Comparative Study of the Effects of Process Parameters on the Yield of Oil from Melon Seed (Cococynthis citrullus) and Coconut Fruit (Cocos nucifera)
    Authors: Ndidi F. Amulu, Patrick E. Amulu, Gordian O. Mbah, Callistus N. Ude, Keywords: Coconut, melon, optimization, processing. DOI:10.5281/zenodo.1109185 Abstract: Comparative analysis of the properties of melon seed, coconut fruit and their oil yield were evaluated in this work using standard analytical technique AOAC. The results of the analysis carried out revealed that the moisture contents of the samples studied are 11.15% (melon) and 7.59% (coconut). The crude lipid content are 46.10% (melon) and 55.15% (coconut).The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant difference (p < 0.05) in yield between the samples, with melon oil seed flour having a higher percentage range of oil yield (41.30 – 52.90%) and coconut (36.25 – 49.83%). The physical characterization of the extracted oil was also carried out. The values gotten for refractive index are 1.487 (melon seed oil) and 1.361 (coconut oil) and viscosities are 0.008 (melon seed oil) and 0.002 (coconut oil). The chemical analysis of the extracted oils shows acid value of 1.00mg NaOH/g oil (melon oil), 10.050mg NaOH/g oil (coconut oil) and saponification value of 187.00mg/KOH (melon oil) and 183.26mg/KOH (coconut oil). The iodine value of the melon oil gave 75.00mg I2/g and 81.00mg I2/g for coconut oil. A standard statistical package Minitab version 16.0 was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to optimize the leaching process. Both samples gave high oil yield at the same optimal conditions. The optimal conditions to obtain highest oil yield ≥ 52% (melon seed) and ≥ 48% (coconut seed) are solute - solvent ratio of 40g/ml, leaching time of 2hours and leaching temperature of 50oC. The two samples studied have potential of yielding oil with melon seed giving the higher yield.
  • Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices
    Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar, Keywords: Oil palm, image processing, disease, leaves. DOI:10.5281/zenodo.1107585 Abstract: Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSRinfected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.
  • Selection of Pichia kudriavzevii Strain for the Production of Single-Cell Protein from Cassava Processing Waste
    Authors: Phakamas Rachamontree, Theerawut Phusantisampan, Natthakorn Woravutthikul, Peerapong Pornwongthong, Malinee Sriariyanun, Keywords: Single cell protein, response surface methodology, yeast, cassava processing waste. DOI:10.5281/zenodo.1100923 Abstract: A total of 115 yeast strains isolated from local cassava processing wastes were measured for crude protein content. Among these strains, the strain MSY-2 possessed the highest protein concentration (>3.5 mg protein/mL). By using molecular identification tools, it was identified to be a strain of Pichia kudriavzevii based on similarity of D1/D2 domain of 26S rDNA region. In this study, to optimize the protein production by MSY-2 strain, Response Surface Methodology (RSM) was applied. The tested parameters were the carbon content, nitrogen content, and incubation time. Here, the value of regression coefficient (R2) = 0.7194 could be explained by the model which is high to support the significance of the model. Under the optimal condition, the protein content was produced up to 3.77 g per L of the culture and MSY-2 strain contains 66.8 g protein per 100 g of cell dry weight. These results revealed the plausibility of applying the novel strain of yeast in single-cell protein production.
  • Odor Discrimination Using Neural Decoding of Olfactory Bulbs in Rats
    Authors: K.-J. You, H.J. Lee, Y. Lang, C. Im, C.S. Koh, H.-C. Shin, Keywords: biomedical signal processing, neural engineering, olfactory,neural decoding, BMI DOI:10.5281/zenodo.1084131 Abstract: This paper presents a novel method for inferring the odor based on neural activities observed from rats- main olfactory bulbs. Multi-channel extra-cellular single unit recordings were done by micro-wire electrodes (tungsten, 50μm, 32 channels) implanted in the mitral/tufted cell layers of the main olfactory bulb of anesthetized rats to obtain neural responses to various odors. Neural response as a key feature was measured by substraction of neural firing rate before stimulus from after. For odor inference, we have developed a decoding method based on the maximum likelihood (ML) estimation. The results have shown that the average decoding accuracy is about 100.0%, 96.0%, 84.0%, and 100.0% with four rats, respectively. This work has profound implications for a novel brain-machine interface system for odor inference.
  • Colour Stability of Wild Cactus Pear Juice
    Authors: Kgatla T.E, Howard S.S., Hiss D.C., Keywords: Colour, Hunter L.a.b, Prickly pear juice, processing,physicochemical. DOI:10.5281/zenodo.1080476 Abstract: Prickly pear (Opuntia spp) fruit has received renewed interest since it contains a betalain pigment that has an attractive purple colour for the production of juice. Prickly pear juice was prepared by homogenizing the fruit and treating the pulp with 48 g of pectinase from Aspergillus niger. Titratable acidity was determined by diluting 10 ml prickly pear juice with 90 ml deionized water and titrating to pH 8.2 with 0.1 N NaOH. Brix was measured using a refractometer and ascorbic acid content assayed spectrophotometrically. Colour variation was determined colorimetrically (Hunter L.a.b.). Hunter L.a.b. analysis showed that the red purple colour of prickly pear juice had been affected by juice treatments. This was indicated by low light values of colour difference meter (CDML*), hue, CDMa* and CDMb* values. It was observed that non-treated prickly pear juice had a high (colour difference meter of light) CDML* of 3.9 compared to juice treatments (range 3.29 to 2.14). The CDML* significantly (p