ANALYTICAL TECHNOLOGIES FOR SYNTHETIC BIOLOGY CONFERENCE


Analytical Technologies for Synthetic Biology Conference is one of the leading research topics in the international research conference domain. Analytical Technologies for Synthetic Biology is a conference track under the Biological and Ecological Engineering Conference which aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Biological and Ecological Engineering.

internationalscience.net provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of (Biological and Ecological Engineering).

Analytical Technologies for Synthetic Biology is not just a call for academic papers on the topic; it can also include a conference, event, symposium, scientific meeting, academic, or workshop.

You are welcome to SUBMIT your research paper or manuscript to Analytical Technologies for Synthetic Biology Conference Track will be held at “Biological and Ecological Engineering Conference in Paris, France in November 2019” - “Biological and Ecological Engineering Conference in London, United Kingdom in January 2020” - “Biological and Ecological Engineering Conference in Tokyo, Japan in March 2020” - “Biological and Ecological Engineering Conference in Amsterdam, Netherlands in May 2020” - “Biological and Ecological Engineering Conference in Istanbul, Turkey in June 2020” - “Biological and Ecological Engineering Conference in Stockholm, Sweden in July 2020” - “Biological and Ecological Engineering Conference in Zürich, Switzerland in September 2020” - “Biological and Ecological Engineering Conference in New York, United States in November 2020” .

Analytical Technologies for Synthetic Biology is also a leading research topic on Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, Elsevier, Scopus, Web of Science.

INTERNATIONAL BIOLOGICAL AND ECOLOGICAL ENGINEERING CONFERENCE

NOVEMBER 21 - 22, 2019
PARIS, FRANCE

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline October 21, 2019
  • CONFERENCE CODE: 18BEE11FR
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOLOGICAL AND ECOLOGICAL ENGINEERING CONFERENCE

JANUARY 21 - 22, 2020
LONDON, UNITED KINGDOM

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline December 19, 2019
  • CONFERENCE CODE: 20BEE01GB
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOLOGICAL AND ECOLOGICAL ENGINEERING CONFERENCE

MARCH 26 - 27, 2020
TOKYO, JAPAN

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline February 27, 2020
  • CONFERENCE CODE: 20BEE03JP
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOLOGICAL AND ECOLOGICAL ENGINEERING CONFERENCE

MAY 13 - 14, 2020
AMSTERDAM, NETHERLANDS

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline April 14, 2020
  • CONFERENCE CODE: 20BEE05NL
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOLOGICAL AND ECOLOGICAL ENGINEERING CONFERENCE

JUNE 25 - 26, 2020
ISTANBUL, TURKEY

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline May 26, 2020
  • CONFERENCE CODE: 20BEE06TR
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOLOGICAL AND ECOLOGICAL ENGINEERING CONFERENCE

JULY 14 - 15, 2020
STOCKHOLM, SWEDEN

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline June 11, 2020
  • CONFERENCE CODE: 20BEE07SE
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOLOGICAL AND ECOLOGICAL ENGINEERING CONFERENCE

SEPTEMBER 15 - 16, 2020
ZÜRICH, SWITZERLAND

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline August 13, 2020
  • CONFERENCE CODE: 20BEE09CH
  • One Time Submission Deadline Reminder

INTERNATIONAL BIOLOGICAL AND ECOLOGICAL ENGINEERING CONFERENCE

NOVEMBER 05 - 06, 2020
NEW YORK, UNITED STATES

  • Abstracts/Full-Text Paper Submission Deadline March 14, 2019
  • Notification of Acceptance/Rejection Deadline March 28, 2019
  • Final Paper and Early Bird Registration Deadline October 05, 2020
  • CONFERENCE CODE: 20BEE11US
  • One Time Submission Deadline Reminder

Biological and Ecological Engineering Conference Call For Papers are listed below:

Previously Published Papers on "Analytical Technologies for Synthetic Biology Conference"

  • Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation
    Authors: Vishwesh Kulkarni, Nikhil Bellarykar, Keywords: Synthetic gene network, network identification, nonlinear modeling, optimization. DOI:10.5281/zenodo.1474948 Abstract: Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.
  • Accounting for Rice Productivity Heterogeneity in Ghana: The Two-Step Stochastic Metafrontier Approach
    Authors: Franklin Nantui Mabe, Samuel A. Donkoh, Seidu Al-Hassan, Keywords: Efficiency, farmer innovation systems, improved agricultural technologies, two-step stochastic metafrontier approach. DOI:10.5281/zenodo.1340613 Abstract: Rice yields among agro-ecological zones are heterogeneous. Farmers, researchers and policy makers are making frantic efforts to bridge rice yield gaps between agro-ecological zones through the promotion of improved agricultural technologies (IATs). Farmers are also modifying these IATs and blending them with indigenous farming practices (IFPs) to form farmer innovation systems (FISs). Also, different metafrontier models have been used in estimating productivity performances and their drivers. This study used the two-step stochastic metafrontier model to estimate the productivity performances of rice farmers and their determining factors in GSZ, FSTZ and CSZ. The study used both primary and secondary data. Farmers in CSZ are the most technically efficient. Technical inefficiencies of farmers are negatively influenced by age, sex, household size, education years, extension visits, contract farming, access to improved seeds, access to irrigation, high rainfall amount, less lodging of rice, and well-coordinated and synergized adoption of technologies. Albeit farmers in CSZ are doing well in terms of rice yield, they still have the highest potential of increasing rice yield since they had the lowest TGR. It is recommended that government through the ministry of food and agriculture, development partners and individual private companies promote the adoption of IATs as well as educate farmers on how to coordinate and synergize the adoption of the whole package. Contract farming concept and agricultural extension intensification should be vigorously pursued to the latter.
  • Correlation between the Sowing Date and the Yield of Maize on Chernozem Soil, in Connection with the Leaf Area Index and the Photosynthesis
    Authors: E. Bene, Keywords: Sowing date, hybrid, leaf area index, photosynthetic capacity. DOI:10.5281/zenodo.1109423 Abstract: Our sowing date experiment took place in the Demonstration Garden of Institution of Plant Sciences, Centre for Agricultural Sciences of University of Debrecen, in 2012-2014. The paper contains data of test year 2014. Our purpose, besides several other examinations, was to observe how sowing date influences the leaf area index and the activity of photosynthesis of maize hybrids, and how those factors affect fruiting. In the experiment we monitored the change of the leaf area index and the photosynthesis of hybrids with four different growing seasons. The results obtained confirm that not only the environmental and agricultural factors in the growing season have effect on the yield, but also other factors like the leaf area index and the photosynthesis are determinative parameters, and all those factors together, modifying the effects of each other, develop average yields.
  • Synchrony between Genetic Repressilators in Sister Cells in Different Temperatures
    Authors: Jerome G. Chandraseelan, Samuel M. D. Oliveira, Antti Häkkinen, Sofia Startceva, Andre S. Ribeiro, Keywords: Repressilator, robustness, synchrony, synthetic biology. DOI:10.5281/zenodo.1107607 Abstract: We used live E. coli containing synthetic genetic oscillators to study how the degree of synchrony between the genetic circuits of sister cells changes with temperature. We found that both the mean and the variability of the degree of synchrony between the fluorescence signals from sister cells are affected by temperature. Also, while most pairs of sister cells were found to be highly synchronous in each condition, the number of asynchronous pairs increased with increasing temperature, which was found to be due to disruptions in the oscillations. Finally we provide evidence that these disruptions tend to affect multiple generations as opposed to individual cells. These findings provide insight in how to design more robust synthetic circuits and in how cell division can affect their dynamics.
  • Breeding Biology and Induced Breeding Status of Freshwater Mud Eel, Monopterus cuchia
    Authors: M. F. Miah, H. Ali, E. Zannath, T. M. Shuvra, M. N. Naser, M. K. Ahmed, Keywords: Breeding biology, induced breeding, Monopterus cuchia. DOI:10.5281/zenodo.1107557 Abstract: In this study, breeding biology and induced breeding of freshwater mud eel, Monopterus cuchia was observed during the experimental period from February to June, 2013. Breeding biology of freshwater mud eel, Monopterus cuchia was considered in terms of gonadosomatic index, length-weight relationship of gonad, ova diameter and fecundity. The ova diameter was recorded from 0.3 mm to 4.30 mm and the individual fecundity was recorded from 155 to 1495 while relative fecundity was found from 2.64 to 12.45. The fecundity related to body weight and length of fish was also discussed. A peak of GSI was observed 2.14±0.2 in male and 5.1 ±1.09 in female. Induced breeding of freshwater mud eel, Monopterus cuchia was also practiced with different doses of different inducing agents like pituitary gland (PG), human chorionic gonadotropin (HCG), Gonadotropin releasing hormone (GnRH) and Ovuline-a synthetic hormone in different environmental conditions. However, it was observed that the artificial breeding of freshwater mud eel, Monopterus cuchia was not yet succeeded through inducing agents in captive conditions, rather the inducing agent showed negative impacts on fecundity and ovarian tissues. It was seen that mature eggs in the oviduct were reduced, absorbed and some eggs were found in spoiled condition.
  • Estimation of Fecundity and Gonadosomatic Index of Terapon jarbua from Pondicherry Coast, India
    Authors: R. Nandikeswari, M. Sambasivam, V. Anandan, Keywords: Fecundity, Gonadosomatic index, Reproductive biology, spawning, Terapon jarbua. DOI:10.5281/zenodo.1090709 Abstract: In the present study fecundity of Terapon jarbua was estimated for 41 matured females from the Bay of Bengal, Pondicherry. The fecundity (F) was found to range from 13,475 to 115,920 in fishes between 173-278mm Total length (TL) and 65- 298 gm weight respectively. The co-efficient of correlation for F/TL (log F = - 4.821 + 4.146 log TL), F/SL (log F = -3.936 + 3.867 log SL), F/WF (log F = 1.229 + 0.730 log TW) and F/GW (log F = 0.724 + 1.113 log GW) were obtained as 0.474, 0.537, 0.641 and 0.908 respectively. The regression line for the TL, SL, WF and GW of the fishes were found to be linear when they were plotted against their fecundity on logarithmic scales. Highly significant (P
  • Structural Basis of Resistance of Helicobacterpylori DnaK to Antimicrobial Peptide Pyrrhocoricin
    Authors: Musammat F. Nahar, Anna Roujeinikova, Keywords: Helicobacter pylori, molecular chaperone DnaK,pyrrhocoricin, structural biology. DOI:10.5281/zenodo.1080714 Abstract: Bacterial molecular chaperone DnaK plays an essential role in protein folding, stress response and transmembrane targeting of proteins. DnaKs from many bacterial species, including Escherichia coli, Salmonella typhimurium and Haemophilus infleunzae are the molecular targets for the insect-derived antimicrobial peptide pyrrhocoricin. Pyrrhocoricin-like peptides bind in the substrate recognition tunnel. Despite the high degree of crossspecies sequence conservation in the substrate-binding tunnel, some bacteria are not sensitive to pyrrhocoricin. This work addresses the molecular mechanism of resistance of Helicobacter pylori DnaK to pyrrhocoricin. Homology modelling, structural and sequence analysis identify a single aminoacid substitution at the interface between the lid and the β-sandwich subdomains of the DnaK substrate-binding domain as the major determinant for its resistance.
  • Characterization of an Acetobacter Strain Isolated from Iranian Peach that Tolerates High Temperatures and Ethanol Concentrations
    Authors: K. Beheshti Maal, R. Shafiee, Keywords: Acetobacter, Acetic Acid Bacteria, Vinegar, Peach,Food Biotechnology, Industrial Microbiology, Fermentation DOI:10.5281/zenodo.1078034 Abstract: Vinegar is a precious food additive and complement as well as effective preservative against food spoilage. Recently traditional vinegar production has been improved using various natural substrates and fruits such as grape, palm, cherry, coconut, date, sugarcane, rice and balsam. These neoclassical fermentations resulted in several vinegar types with different tastes, fragrances and nutritional values because of applying various acetic acid bacteria as starters. Acetic acid bacteria include genera Acetobacter, Gluconacetobacter and Gluconobacter according to latest edition of Bergy-s Manual of Systematic Bacteriology that classifies genera on the basis of their 16s RNA differences. Acetobacter spp as the main vinegar starters belong to family Acetobacteraceae that are gram negative obligate aerobes, chemoorganotrophic bacilli that are oxidase negative and oxidize ethanol to acetic acid. In this research we isolated and identified a native Acetobacter strain with high acetic acid productivity and tolerance against high ethanol concentrations from Iranian peach as a summer delicious fruit that is very susceptible to food spoilage and decay. We used selective and specific laboratorial culture media such as Standard GYC, Frateur and Carr medium. Also we used a new industrial culture medium and a miniature fermentor with a new aeration system innovated by Pars Yeema Biotechnologists Co., Isfahan Science and Technology Town (ISTT), Isfahan, Iran. The isolated strain was successfully cultivated in modified Carr media with 2.5% and 5% ethanol simultaneously in high temperatures, 34 - 40º C after 96 hours of incubation period. We showed that the increase of ethanol concentration resulted in rising of strain sensitivity to high temperature. In conclusion we isolated and characterized a new Acetobacter strain from Iranian peach that could be considered as a potential strain for production of a new vinegar type, peach vinegar, with a delicious taste and advantageous nutritional value in food biotechnology and industrial microbiology.
  • The Effects of Four Organic Cropping Sequences on Soil Phosphorous Cycling and Arbuscular Mycorrhizal Fungi
    Authors: R. J. Parham, J. D. Knight, Keywords: Arbuscular mycorrhizal fungi, crop rotation, organic farming, phosphorous, soil microbiology. DOI:10.5281/zenodo.1087009 Abstract: Organic farmers across Saskatchewan face soil phosphorus (P) shortages. Due to the restriction on inputs in organic systems, farmers rely on crop rotation and naturally-occurring arbuscular mycorrhizal fungi (AMF) for plant P supply. Crop rotation is important for disease, pest, and weed management. Crops that are not colonized by AMF (non-mycorrhizal) can decrease colonization of a following crop. An experiment was performed to quantify soil P cycling in four cropping sequences under organic management and determine if mustard (non-mycorrhizal) was delaying the colonization of subsequent wheat. Soils from the four cropping sequences were measured for inorganic soil P (Pi), AMF spore density (SD), phospholipid fatty acid analysis (PLFA, for AMF biomarker counts), and alkaline phosphatase activity (ALPase, related to AMF metabolic activity). Plants were measured for AMF colonization and P content and uptake of above-ground biomass. A lack of difference in AMF activity indicated that mustard was not depressing colonization. Instead, AMF colonization was largely determined by crop type and crop rotation.
  • Proteins Length and their Phenotypic Potential
    Authors: Tom Snir, Eitan Rubin, Keywords: Systems Biology, Protein Length DOI:10.5281/zenodo.1075705 Abstract: Mendelian Disease Genes represent a collection of single points of failure for the various systems they constitute. Such genes have been shown, on average, to encode longer proteins than 'non-disease' proteins. Existing models suggest that this results from the increased likeli-hood of longer genes undergoing mutations. Here, we show that in saturated mutagenesis experiments performed on model organisms, where the likelihood of each gene mutating is one, a similar relationship between length and the probability of a gene being lethal was observed. We thus suggest an extended model demonstrating that the likelihood of a mutated gene to produce a severe phenotype is length-dependent. Using the occurrence of conserved domains, we bring evidence that this dependency results from a correlation between protein length and the number of functions it performs. We propose that protein length thus serves as a proxy for protein cardinality in different networks required for the organism's survival and well-being. We use this example to argue that the collection of Mendelian Disease Genes can, and should, be used to study the rules governing systems vulnerability in living organisms.